

Baker Hughes Climate Technology Solutions

Chris Barkey, CTO, Industrial & Energy Technology Alessandro Bresciani, SVP - Climate Technology Solutions Tom Harper, VP - Commercial Development, Climate Technology Solutions

January 30, 2023

Copyright 2023 Baker Hughes Company. All rights reserved. The information contained in this document is company confidential and proprietary property of Baker Hughes and its affiliates. It is to be used only for the benefit of Baker Hughes and may not be distributed, transmitted, reproduced, altered, or used for any purpose without the express written consent of Baker Hughes. This presentation (and oral statements made regarding the subjects of this release) may contain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, (each a "forward-looking statement"). The words "anticipate," "believe," "ensure," "expect," "if," "intend," "estimate," "project," "foresee," "forecasts," "predict," "outlook," "aim," "will," "could," "should," "potential," "would," "may," "probable," "likely," and similar expressions, and the negative thereof, are intended to identify forward-looking statements. There are many risks and uncertainties that could cause actual results to differ materially from our forward-looking statements. These forward-looking statements are also affected by the risk factors described in the Company's annual report on Form 10-K for the period ended December 31, 2021 and those set forth from time to time in other filings with the Securities and Exchange Commission ("SEC"). The documents are available through the Company's website at: www.investors.bakerhughes.com or through the SEC's Electronic Data Gathering and Analysis Retrieval ("EDGAR") system at: www.sec.gov. We undertake no obligation to publicly update or revise any forward-looking statement.

Decades of experience working with natural gas, H₂ & CO₂

Uniquely placed to play a leading role in the decarbonization of the energy & industrial sectors

Baker Hughes Today	Early Life of CTS	Future CTS
#1 provider of liquefaction equipment and services	~\$400M of New Energy orders in 2023	\$6-7B New Energy orders opportunity by 2030
60 years of experience working with Hydrogen	Deploying existing equipment in CCUS, H2, Clean Power &	Global leader in energy efficiency and carbon abatement technologies
Leading provider of compression equipment for all gases	applications	Successfully incubated and commercially deployed
Condition monitoring specialist – driving equipment reliability & efficiency	Leveraging relationships with energy companies to play a leading role in early-stage projects	Diverse customer base across energy & industrial sectors

CTS - our approach

Leveraging our existing technologies and market presence, while we build for the future

Enter new markets & penetrate existing customer base

Decarbonize existing O&G customer operations with existing technology

- Leverage installed base
- Emissions Abatement leveraging proven technologies

Enter new industrial markets

- Create new cross-industry partnerships
- Build new industrial sales

Building new business models & offerings for a "forming" market

 Creating a differentiated position as the market evolves

Copyright 2023 Baker Hughes Company. All rights reserved.

1. Levelized Cost of Capture

2. Metal-organic Framework

Invest in future, innovative technologies

OUR APPROACH

Focused on adding capabilities in areas of CCUS, H2 & Clean Power

The future of gas fired power generation

Low LCOC¹ for small emitters

🔇 EKONA 🛛 🖻

Net-zero H2

Gen II Solvent for large scale Carbon Capture

MOFs² platform for Direct Air Capture

+ Additional 7 investments

Leverage technology expertise to commercialize investments

World leading R&D capability

- Advanced manufacturing & materials engineering
- Turbomachinery, Fluid dynamics, Roto dynamics & combustion

Global network of test centers

• Bench Scale , Full Scale & Field Pilot testing facilities

Global supply chain and manufacturing scale

Baker Hughes Confidential

Market activity – strategic collaborations

A sample of our successes so far

- Green Hydrogen, NEOM, Saudi Arabia Providing advanced hydrogen compression technology
- Blue Hydrogen, Edmonton, Alberta, Canada Providing 100% hydrogen fueled NovaLT 16 gas turbine technology to APD

 CCUS, Kasawari, Sarawak, Malaysia – Separate and compress 3.3 MTPA of CO2 at the offshore CCS platform, the worlds largest offshore CCS facility

Our investment portfolio

Carbon capture

Solvent-based post-combustion carbon capture technology

Carbon utilization

Carbon capture process

intensification technology

mosaic*

Advanced next-gen CO₂

capture for low-purity streams

Exclusive license for mixed salt capture

👌 Electrochaea 🛛 🦲

Biomethanation technology to produce

renewable methane, recycle of CO_2

Creating E-fuels utilizing green H2 & CO₂

Hydrogen

EKONA

Methane pyrolysis technology to produce industrial scale clean and cost-efficient hydrogen

Clean energy

Next-gen energy network delivering efficient, compact system

😪 Nemesys. NEw Mobility Electric SYStem

Several hydrogen technologies, including electrolyzer, fuel cell, metal hydrides, plasma SMR

NETPOWER

Converts natural and renewable

gas into zero-emissions power

Low-pressure, low-temperature, high-value graphene production system

Energy storage

Highly-efficient long duration energy storage technology

6

Baker Hughes Confidential

World class labs and testing facilities globally

- Advanced Manufacturing & Engineering
- Materials & Process Engineering
- Digital & Emerging Technologies
- Technology Testing Labs & Scales
- Data Science

Florence / Massa, Italy

Materials & Additive Technologies

Adv. Machining, Welding & Powder Metallurgy

VR, Robotics & Metrology

Fluid Dynamics, Roto Dynamics & Combustion

Oklahoma City / Houston , US

Edge, Machine Learning, High Performance Computing

Bench Scale, Full Scale & Field Pilot Testing Facilities

Energy Technology Evaluation

Additive Technologies

Bangalore, India

Materials & Additive Technologies

Energy Technology Evaluation

Queretaro, Mexico

Sensors & Data Science Artificial Intelligence

Technology Readiness Level (TRL)

Understanding the framework to commercialize new technologies

TRL 1	Basic principles observed
TRL 2	Technology concept formulated
TRL 3	Experimental proof of concept
TRL 4	Technology validated in lab
TRL 5	Technology validated in relevant environment
TRL 6	Technology demonstrated in relevant environment
TRL 7	System prototype demonstration in operational environment
TRL 8	System complete and qualified
TRL 9	Actual system proven in operational environment

Technology Readiness Assessment

Risk reduction starts with the definition of the TRL milestones along the development roadmap

Risk reduction process

Risk reduction is a consequence of each step forward in TRL level, due to testing or simulation activities

Produce emissions-free and low-cost electric power

2022

- Equity investment \bullet
- Utility scale supplier ٠ agreement
- Industrial scale • exclusive license

NET Power

Gas-to-power technology with integrated carbon capture for industrial and O&G energy generation. Natural gas and oxygen fuel a supercritical CO_2 cycle that generates electricity, while capturing CO_2 .

High efficiency power plants to produce electricity, water, and pipeline or sequestration-ready CO₂ locked away from atmosphere.

BH developing supercritical CO₂ Turbo Expander for power generation and will provide pumping and compression technology,

BH bringing system integration and process knowledge to accelerate solution for market deployment

NETPOWER

Direct Air Capture of CO₂ for Utilization and Storage

2022

- Full acquisition
- High-capacity and high-selectivity for capturing CO2
- Proprietary metalorganic framework (MOF)

Mosaic Materials

Mosaic Materials proprietary amine appended metal-organic framework (MOF) sorbent technology features leading capacity, selectivity and energy efficiency for CO2 separation from air, or other low concentration sources

Further development of Mosaic's technology creates a pathway towards achieving lower carbon removal costs. This will help enable CO2 utilization and carbon circularity, as well as CO2 storage with negative carbon emissions

mosaic

